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Outline

® What is the tropical Pacific decadal variability
(TPDV) ?

® What are the climate consequences of TPDV?

e What causes TPDV?

1. Earlier Hypotheses
2. Our Hypothesis
3. Evidence for Our Hypothesis

®* What is needed done further?




TPDV in Observations
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TPDV in Climate Models

Decadal Variation in the STD of Nino3 SST
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Spatial Pattern of TPDV in GFDL CM2.1
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TPDV is a leading cause of lasting droughts
over the continental U.S.

(Shubert et al. 2004, Seager et al.
2005, and others)
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TPDV is the Epicenter of PDO and
Cause Climate Anomalies Worldwide Including Those Affecting
The Marine Ecosystem
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TPDV Causes The Hiatus in Global Warming!
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What Causes TPDV?

Transmission of the decadal variability in the extra-tropics to the
tropics through atmospheric or ocean pathways (Deser et al. 1996,
Weaver 1999, Kleeman et al. 1999, Barnett et al. 1999)

Tropical—extratropical interaction (Gu and Philander 1997, Wu et al.
2003)

Tropical ocean-atmosphere interaction on the decadal time-scale
(Knutson and Manabe 1998, Chang et al. 2001, Luo and Yamagata
2001)

Chaotic dynamics—a homoclinic/heteoclinic scenario of chaos
(Timmerman and Jin 2002)

Stochastic forcin% from the atmosphere upon the tropical Pacific
(Clement et al. 2011, Okumura 2013).

Nonlinear Interaction between the time-mean effect of El Nino-

Southern Oscillation and its decadal background state (Roger et al.

2004, Schopf and Burgman 2006, Sun and Yu 2008, Liang et al. 2012,
Ogata et al. 2013, Sun et al. 2014, Hua et al. 2015)



1)

2)

3)

4)

5)

Elements in
the Nonlinear Interaction Hypothesis

Decadal warming in the eastern tropical Pacific (such as the anomalous warm SST spannin%_fror_n the
mid of 1970s to the end of last century) is a consequence of the time-mean effect (or rectification
effect) of anomalously high ENSO activity during this period.

Conversely, decadal cooling in the eastern tropical Pacific (such as the most recent cooling that has
EeNeSnOIinkted_tto the hiatus in global mean temperature) is a consequence of the relative quiescence of
activity.

The time-mean effect of anomalously high ENSO activi(’:tly has such a spatial pattern and magnitude that
it result in a significant reduction in the temperature difference between the warmpool and the
subsurface thermocline (Tw-Tc)—the thermal force that drives this anomalous ENSO activity in the first
place. (In other words, the anomalously higher/low activity of ENSO is self-destructive)

During the relative quiescent period of the ENSO activity, the meridional differential heating and the
background meridional circulation that have always worked in the background retake preeminence and
build up the thermal forcin%gw-Tc;)_ that drives ENSO activity, setting the stage for the onset of another
epoch of higher level of ENSO activity.

Nonlinear interaction between the time-mean effect of ENSO and its decadal background state
generates continuous tropical Pacific Decadal Variability—alternating decades with relatively warmer
and colder eastern Pacific. The initial warming to the central Pacific from the time-mean effect of ENSO
may serve as a positive feedback that enables the system to overshoot its equilibrium.




Questions

to be answered to test the hypothesis

o Is there a significant time-mean effect from ENSO?

o Does the time-mean effect match the observed
spatial pattern of decadal change?

o Does the time-mean effect have such a spatial
pattern that enables a modulation of ENSO

activity?




Inferring ENSO time-mean effect from its asymmetry

Observation
(a) Warm Phase

(¢) Warm Phase + Cold Phase
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1. ENSO asymmetry suggests a time-mean effect, but does not
guarantee one

2 The residual (sum of the anomalies of the two phases of ENSO) has

maximum on the equator, while the observed decadal war



Our Methodologies
to determine

The Time-Mean Effect of ENSO

e Compare the equilibrium state of the coupled tropical
ocean-atmosphere system with the time-mean state of
the system, though the use of a box model whose

unstable equilibrium can be analytically obtained
( Liang et al. 2012)

®* Force an Ocean GCM using surface forcing with and
without ENSO fluctuations (Sun et al. 2014, Hua et al.
2015)

® Perturbation Experiments with coupled GCMs with and
without equatorial coupling between surface winds and
SST gradients (Sun and Zhang 2006, Yu and Sun 2009)




Forced Ocean GCM Experiments
with and without ENSO in the Surface Forcing

A B

Atmosphere

« The long-term mean winds are identical for A and B, but A has
interannual variations and B does not.

« The thermal BCs for A and B are identical-- both are restored
to a prescribed potential SST




Time-Mean SST Difference
Between Experiments with/without ENSO

lime (year)
62yrs (1950—2011) time mean results (fluctuating wind minus fixed wind)
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Time-mean Upper Ocean Tempt. Difference
Between Experiments with/without ENSO

Time mean (1950-2011) upper ocean temperature differences

fluctuating wind runs — fixed wind runs
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The rectified effect of ENSO in the Upper Ocean T:
Sensitivity to the variance of ENSO
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A Conceptual Picture for
the Time-Mean Effect of ENSO:
A Heat Mixer
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Recall That Tw-Tc Drives ENSO

— / Walker Circulation

aJaydsowy

30 s 2 R —— 3 [0

60 {3 g |60

S ~ 120 120
- ~ 150 150
< 180 - 180

2 210 210

240 1 240

2701 270

300 | | 300

0T ”‘\_m/" — ' 330

140E 160 180 160W 140W 120W 100W 80W

Longitude



Implications of the time-mean effect of ENSO events:

The fact that ENSO events collectively destroy the thermal
gradient (i.e. Tw-Tc) that supports their existence in the first
place implies that an elevated ENSO activity is self-
destructive. A subdued period of activity is thus ensured to
follow from an elevated period of activity.

New Question:

How does the system
to recover from the
stabilization of the
time-mean effect of
ENSO events?




The Opposing Forces:
The Meridional Differential Heating and the Meridional

Cell
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—

he maintenance of the long-term mean thermal gradients
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A Nonlinear Mechanism For
TPDV and Decadal Modulation of ENSO Activity

TPDV

Stabilization from
ENSO rectification

Background exceeds background

destabilization exceeds destabilization
stabilization from ENSO
rectification

Low ENSO activity

and cool eastern

Extratropics

East




